作者 | 阿里云智能事业部高级开发工程师 陈星宇(宇慕)概述etcd是一个开源的分布式的kv存储系统, 最近刚被cncf列为沙箱孵化项目etcd的应用场景很广,很多地方都用到了它,例如kubernetes就用它作为集群内部存储元信息的账本本篇文章首先介绍我们优化的背景,为什么我们要进行优化, 之后介绍etcd内部存储系统的工作方式,之后介绍本次具体的实现方式及最后的优化效果优化背景由于阿里巴巴内部集群规模大,所以对etcd的数据存储容量有特殊需求,之前的etcd支持的存储大小无法满足要求, 因此我们开发了基于etcd proxy的解决方案,将数据转储到了tair中(可类比redis))这种方案虽然解决了数据存储容量的问题,但是弊端也是比较明显的,由于proxy需要将数据进行搬移,因此操作的延时比原生存储大了很多除此之外,由于多了tair这个组件,运维和管理成本较高因此我们就想到底是什么原因限制了etcd的存储容量,我们是否可以通过技术手段优化解决呢?提出了如上问题后我们首先进行了压力测试不停地像etcd中注入数据,当etcd存储数据量超过40GB后,经过一次compact(compact是etcd将不需要的历史版本数据删除的操作)后发现put操作的延时激增,很多操作还出现了超时监控发现boltdb内部spill操作(具体定义见下文)耗时显著增加(从一般的1ms左右激增到了8s)之后经过反复多次压测都是如此,每次发生compact后,就像世界发生了停止,所有etcd读写操作延时比正常值高了几百倍,根本无法使用etcd内部存储工作原理etcd存储层可以看成由两部分组成,一层在内存中的基于btree的索引层,一层基于boltdb的磁盘存储层这里我们重点介绍底层boltdb层,因为和本次优化相关,其他可参考上文etcd中使用boltdb作为最底层持久化kv数据库,boltdb的介绍如下:Bolt was originally a port of LMDB so it is architecturally similar. Both use a B+tree, have ACID semantics with fully serializable transactions, and support lock-free MVCC using a single writer and multiple readers.Bolt is a relatively small code base (<3KLOC) for an embedded, serializable, transactional key/value database so it can be a good starting point for people interested in how databases work如上介绍,它短小精悍,可以内嵌到其他软件内部,作为数据库使用,例如etcd就内嵌了boltdb作为内部存储k/v数据的引擎boltdb的内部使用B+ tree作为存储数据的数据结构,叶子节点存放具体的真实存储键值它将所有数据存放在单个文件中,使用mmap将其映射到内存,进行读取,对数据的修改利用write写入文件数据存放的基本单位是一个page, 大小默认为4K. 当发生数据删除时,boltdb不直接将删掉的磁盘空间还给系统,而是内部将他先暂时保存,构成一个已经释放的page池,供后续使用,这个所谓的池在boltdb内叫freelist例子如下:红色的page 43, 45, 46, 50 页面正在被使用,而page 42, 44, 47, 48, 49, 51 是空闲的,可供后续使用如下etcd监控图当etcd数据量在50GB左右时,spill 操作延时激增到了8s问题分析由于发生了用户数据的写入, 因此内部B+ tree结构会频繁发生调整(如再平衡,分裂合并树的节点)spill操作是boltdb内部将用户写入数据commit到磁盘的关键一步, 它发生在树结构调整后它释放不用的page到freelist, 从freelist索取空闲page存储数据通过对spill操作进行更深入细致的调查,我们发现了性能瓶颈所在, spill操作中如下代码耗时最多:// arrayAllocate returns the starting page id of a contiguous list of pages of a given size.// If a contiguous block cannot be found then 0 is returned.func (f freelist) arrayAllocate(txid txid, n int) pgid { ... var initial, previd pgid for i, id := range f.ids { if id <= 1 { panic(fmt.Sprintf(\"invalid page allocation: %d\", id)) } // Reset initial page if this is not contiguous. if previd == 0 || id-previd != 1 { initial = id } // If we found a contiguous block then remove it and return it. if (id-initial)+1 == pgid(n) { if (i + 1) == n { f.ids = f.ids[i+1:] } else { copy(f.ids[i-n+1:], f.ids[i+1:]) # 复制 f.ids = f.ids[:len(f.ids)-n] } ... return initial } previd = id } return 0}之前etcd内部内部工作原理讲到boltdb将之前释放空闲的页面存储为freelist供之后使用,如上代码就是freelist内部page再分配的函数,他尝试分配连续的n个page页面供使用,返回起始页page id 代码中f.ids是一个数组,他记录了内部空闲的page的id例如之前上图页面里f.ids=[42,44,47,48,49,51]当请求n个连续页面时,这种方法通过线性扫描的方式进行查找当遇到内部存在大量碎片时,例如freelist内部存在的页面大多是小的页面,比如大小为1或者2,但是当需要一个size为4的页面时候,这个算法会花很长时间去查找,另外查找后还需调用copy移动数组的元素,当数组元素很多,即内部存储了大量数据时,这个操作是非常慢的优化方案由上面的分析, 我们知道线性扫描查找空页面的方法确实比较naive, 在大数据量场景下很慢前yahoo的chief scientist Udi Manber曾说过在yahoo内最重要的三大算法是 hashing, hashing and hashing!(From algorithm design manual)因此我们的优化方案中将相同大小的连续页面用set组织起来,然后在用hash算法做不同页面大小的映射如下面新版freelist结构体中的freemaps数据结构type freelist struct { ... freemaps map[uint64]pidSet // key is the size of continuous pages(span), value is a set which contains the starting pgids of same size forwardMap map[pgid]uint64 // key is start pgid, value is its span size backwardMap map[pgid]uint64 // key is end pgid, value is its span size ...}除此之外,当页面被释放,我们需要尽可能的去合并成一个大的连续页面,之前的算法这里也比较简单,是个是耗时的操作O(nlgn).我们通过hash算法,新增了另外两个数据结构forwardMap和backwardMap, 他们的具体含义如下面注释所说当一个页面被释放时,他通过查询backwardMap尝试与前面的页面合并,通过查询forwardMap尝试与后面的页面合并具体算法见下面mergeWithExistingSpan函数// mergeWithExistingSpan merges pid to the existing free spans, try to merge it backward and forwardfunc (f freelist) mergeWithExistingSpan(pid pgid) { prev := pid - 1 next := pid + 1 preSize, mergeWithPrev := f.backwardMap[prev] nextSize, mergeWithNext := f.forwardMap[next] newStart := pid newSize := uint64(1) if mergeWithPrev { //merge with previous span start := prev + 1 - pgid(preSize) f.delSpan(start, preSize) newStart -= pgid(preSize) newSize += preSize } if mergeWithNext { // merge with next span f.delSpan(next, nextSize) newSize += nextSize } f.addSpan(newStart, newSize)}新的算法借鉴了内存管理中的segregated freelist的算法,它也使用在tcmalloc中它将page分配时间复杂度由O(n)降为O(1), 释放从O(nlgn)降为O(1),优化效果非常明显实际优化效果以下测试为了排除网络等其他原因,就测试一台etcd节点集群,唯一的不同就是新旧算法不同, 还对老的tair作为后端存储的方案进行了对比测试. 模拟测试为接近真实场景,模拟100个客户端同时向etcd put 1百万的kv对,kv内容随机,控制最高5000qps,总计大约20~30GB数据测试工具是基于官方代码的benchmark工具,各种情况下客户端延时如下旧的算法时间有一些超时没有完成测试,新的segregated hashmapetcd over tail 时间在数据量更大的场景下,并发度更高的情况下新算法提升倍数会更多总结这次优化将boltdb中freelist分配的内部算法由O(n)降为O(1), 释放部分从O(nlgn)降为O(1), 解决了在超大数据规模下etcd内部存储的性能问题,使etcd存储100GB数据时的读写操作也像存储2GB一样流畅并且这次的新算法完全向后兼容,无需做数据迁移或是数据格式变化即可使用新技术带来的福利
目前该优化经过2个多月的反复测试, 上线使用效果稳定,并且已经贡献到了开源社区link,在新版本的boltdb和etcd中,供更多人使用
0 评论